from feazdata import ames
from sklearn.compose import ColumnTransformer
from category_encoders.quantile_encoder import QuantileEncoder
= ColumnTransformer(
ct 'quantile', QuantileEncoder(), ['MS_Zoning'])],
[(="passthrough")
remainder
=ames[["Sale_Price"]].values.flatten()) ct.fit(ames, y
ColumnTransformer(remainder='passthrough', transformers=[('quantile', QuantileEncoder(), ['MS_Zoning'])])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
ColumnTransformer(remainder='passthrough', transformers=[('quantile', QuantileEncoder(), ['MS_Zoning'])])
['MS_Zoning']
QuantileEncoder()
['MS_SubClass', 'Lot_Frontage', 'Lot_Area', 'Street', 'Alley', 'Lot_Shape', 'Land_Contour', 'Utilities', 'Lot_Config', 'Land_Slope', 'Neighborhood', 'Condition_1', 'Condition_2', 'Bldg_Type', 'House_Style', 'Overall_Cond', 'Year_Built', 'Year_Remod_Add', 'Roof_Style', 'Roof_Matl', 'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Mas_Vnr_Area', 'Exter_Cond', 'Foundation', 'Bsmt_Cond', 'Bsmt_Exposure', 'BsmtFin_Type_1', 'BsmtFin_SF_1', 'BsmtFin_Type_2', 'BsmtFin_SF_2', 'Bsmt_Unf_SF', 'Total_Bsmt_SF', 'Heating', 'Heating_QC', 'Central_Air', 'Electrical', 'First_Flr_SF', 'Second_Flr_SF', 'Gr_Liv_Area', 'Bsmt_Full_Bath', 'Bsmt_Half_Bath', 'Full_Bath', 'Half_Bath', 'Bedroom_AbvGr', 'Kitchen_AbvGr', 'TotRms_AbvGrd', 'Functional', 'Fireplaces', 'Garage_Type', 'Garage_Finish', 'Garage_Cars', 'Garage_Area', 'Garage_Cond', 'Paved_Drive', 'Wood_Deck_SF', 'Open_Porch_SF', 'Enclosed_Porch', 'Three_season_porch', 'Screen_Porch', 'Pool_Area', 'Pool_QC', 'Fence', 'Misc_Feature', 'Misc_Val', 'Mo_Sold', 'Year_Sold', 'Sale_Type', 'Sale_Condition', 'Sale_Price', 'Longitude', 'Latitude']
passthrough
ct.transform(ames)
quantile__MS_Zoning ... remainder__Latitude
0 171994.723 ... 42.054
1 140714.286 ... 42.053
2 171994.723 ... 42.053
3 171994.723 ... 42.051
4 171994.723 ... 42.061
... ... ... ...
2925 171994.723 ... 41.989
2926 171994.723 ... 41.988
2927 171994.723 ... 41.987
2928 171994.723 ... 41.991
2929 171994.723 ... 41.989
[2930 rows x 74 columns]