from feazdata import ames
from sklearn.compose import ColumnTransformer
from category_encoders.quantile_encoder import SummaryEncoder
ct = ColumnTransformer(
    [('summary', SummaryEncoder(), ['MS_Zoning'])], 
    remainder="passthrough")
ct.fit(ames, y=ames[["Sale_Price"]].values.flatten())ColumnTransformer(remainder='passthrough',
                  transformers=[('summary', SummaryEncoder(), ['MS_Zoning'])])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
ColumnTransformer(remainder='passthrough',
                  transformers=[('summary', SummaryEncoder(), ['MS_Zoning'])])['MS_Zoning']
SummaryEncoder()
['MS_SubClass', 'Lot_Frontage', 'Lot_Area', 'Street', 'Alley', 'Lot_Shape', 'Land_Contour', 'Utilities', 'Lot_Config', 'Land_Slope', 'Neighborhood', 'Condition_1', 'Condition_2', 'Bldg_Type', 'House_Style', 'Overall_Cond', 'Year_Built', 'Year_Remod_Add', 'Roof_Style', 'Roof_Matl', 'Exterior_1st', 'Exterior_2nd', 'Mas_Vnr_Type', 'Mas_Vnr_Area', 'Exter_Cond', 'Foundation', 'Bsmt_Cond', 'Bsmt_Exposure', 'BsmtFin_Type_1', 'BsmtFin_SF_1', 'BsmtFin_Type_2', 'BsmtFin_SF_2', 'Bsmt_Unf_SF', 'Total_Bsmt_SF', 'Heating', 'Heating_QC', 'Central_Air', 'Electrical', 'First_Flr_SF', 'Second_Flr_SF', 'Gr_Liv_Area', 'Bsmt_Full_Bath', 'Bsmt_Half_Bath', 'Full_Bath', 'Half_Bath', 'Bedroom_AbvGr', 'Kitchen_AbvGr', 'TotRms_AbvGrd', 'Functional', 'Fireplaces', 'Garage_Type', 'Garage_Finish', 'Garage_Cars', 'Garage_Area', 'Garage_Cond', 'Paved_Drive', 'Wood_Deck_SF', 'Open_Porch_SF', 'Enclosed_Porch', 'Three_season_porch', 'Screen_Porch', 'Pool_Area', 'Pool_QC', 'Fence', 'Misc_Feature', 'Misc_Val', 'Mo_Sold', 'Year_Sold', 'Sale_Type', 'Sale_Condition', 'Sale_Price', 'Longitude', 'Latitude']
passthrough
ct.transform(ames)      summary__MS_Zoning_25  ...  remainder__Latitude
0                137496.482  ...               42.054
1                111612.500  ...               42.053
2                137496.482  ...               42.053
3                137496.482  ...               42.051
4                137496.482  ...               42.061
...                     ...  ...                  ...
2925             137496.482  ...               41.989
2926             137496.482  ...               41.988
2927             137496.482  ...               41.987
2928             137496.482  ...               41.991
2929             137496.482  ...               41.989
[2930 rows x 75 columns]